Estadís1ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 7. Control estadís1co de la calidad


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadís1ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 7. Control estadís1co de la calidad"

Transcripción

1 Estadís1ca Tema 7. Control estadís1co de la calidad María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo Licencia: Crea.ve Commons BY- NC- SA 3.0

2 TEMA 7: Control Estadístico de la Calidad Introducción al control de la calidad. Métodos de mejora de la calidad. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R Interpretación de los gráficos.

3 Calidad Llamaremos calidad a la adecuación de un producto o servicio para ser usado. Distinguiremos entre: Calidad de diseño: nivel de calidad elegido en la fase de diseño del producto o servicio. Calidad de conformidad: grado de adecuación a las especificaciones y tolerancias del diseño que se consigue en la fase de fabricación del producto. A los rasgos o propiedades que definen la calidad de un producto o servicio (longitud, resistencia, color, fiabilidad, ) las denominaremos características de la calidad.

4 Control estadístico de la calidad El cliente nunca puede recibir un producto o servicio con características de calidad perfectas debido a la variabilidad: Dos unidades producidas nunca son exactamente iguales Control Estadístico de la Calidad aplicación de técnicas estadísticas a procesos industriales, administrativos y/o servicios con objeto de comprobar si todas sus partes cumplen unas ciertas exigencias de calidad y ayudar a reducir su variabilidad. La mejora de la calidad de conformidad consiste en la reducción sistemática de la variabilidad en productos y servicios.

5 Mejora de la calidad Al mejorar la calidad de conformidad: Se reduce el número de unidades defectuosas que deben desecharse. Se reduce el número de unidades defectuosas que deben reprocesarse. Se elimininan tests e inspecciones. Se producen menos retrasos. Se aprovecha mejor el tiempo de máquinas y operarios. Se ulitizan mejor los materiales. Estos efectos contribuyen a aumentar la productividad. Ejemplo Una fábrica produce diariamente 80 viguetas, de las cuales hay 60 conforme a las especificaciones, pero hay 20 defectuosas. El 45% de las viguetas defectuosas debe ser desechada y el 55% restante debe ser reparada. Supongamos que el coste de fabricación por unidad es de 150 y el coste de reparación es 50 por unidad. Cuánto cuesta cada vigueta producida? Cuántas viguetas se producen diariamente? Se introduce un programa de calidad que reduce el número de viguetas defectuosas a 4 cuál es el coste unitario ahora? y el número medio de viguetas?

6 Ejemplo Mejora de la calidad Al mejorar la calidad de conformidad: Se reduce el número de unidades defectuosas que deben desecharse. Se reduce el número de unidades defectuosas que deben reprocesarse. Se elimininan tests e inspecciones. Se producen menos retrasos. Se aprovecha mejor el tiempo de máquinas y operarios. Se ulitizan mejor los materiales. Estos efectos contribuyen a aumentar la productividad.

7 Costes de la calidad Costes de prevención: inversión en el diseño y la fabricación para evitar producir unidades defectuosas Costes de tasación: inversión en la medida, evaluación o auditoría de productos o servicios, sus componentes y materias primas para asegurar su conformidad. Costes de fallos internos: son los provocados por unidades defectuosas descubiertas antes de llegar al cliente (desechado, pruebas, reprocesado, pérdida de producción, ) Costes de fallos externos: son los provocados por unidades defectuosas descubiertas después de llegar al cliente (garantía, devoluciones, quejas, responsabilidad, pérdida de prestigio y ventas,...)

8 Variabilidad La mayor dificultad para proporcionar productos o servicios de calidad perfecta es la variabilidad inherente a cualquier proceso de fabricación o de prestación de servicios. Si la diferencia entre dos unidades es pequeña no tiene importancia, pero si es relativamente grande, alguna unidad puede ser inaceptable, o lo que es lo mismo defectuosa. El estudio y evaluación de esa variabilidad es el objetivo de la aplicación de técnicas estadísticas al control de la calidad.

9 Variabilidad Diremos que un proceso está bajo control o en estado de control cuando la característica de calidad observada en el proceso varía de forma estable alrededor de un valor medio fijo. El principal objetivo del control de calidad será reducir sistemáticamente la variabilidad en productos y servicios. Para ello es necesario, primero identificar las causas que provocan variabilidad y posteriormente eliminarlas del proceso de fabricación.

10 Causas de la variabilidad Las causas de variabilidad se pueden clasificar como: Las causas de la variabilidad cuando un proceso está bajo control se denominan causas comunes. Son la suma de muchas variaciones pequeñas en todo el proceso (materia prima, condiciones ambientales, maquinaria, operarios, ) y son susceptibles de una caracterización estadística. Las causas que hacen que un proceso abandone su estado de control se denominan causas especiales o asignables. Suelen ser pocas pero sus efectos son muy importantes. Hay que detectarlas (valiéndose del control estadístico de procesos), investigarlas y eliminarlas del sistema. (ej. ajuste incorrecto de una máquina, errores humanos...). El objetivo del Control Estadístico de la Calidad es detectar rápidamente la ocurrencia debida a causas asignables e investigar las causas que la han producido para eliminarlas.

11 Métodos de mejora de la calidad Las siete herramientas de Ishikawa*, son un conjunto de técnicas de control estadístico utilizadas durante el proceso de fabricación del producto o de prestación del servicio para mejorar la calidad y la productividad: Plantillas para recogida de datos (check sheets): plantillas que recogen datos de una característica de calidad Histogramas: representación gráfica de las variables Diagramas causa efecto (fishbone diagram): busca el factor principal de los problemas Diagramas de Pareto: representación gráfica de variables cualitativas Diagramas de dispersión: estudia la relación entre 2 variables Gráficos de flujo: esquema que describe el proceso en sus múltiples partes con el fin de identificar el problema: Gráficos de control: representación de una característica de la calidad con límites de control * Ingeniero japonés experto en el control de la calidad.

12 Métodos de mejora de la calidad Plantillas para recogida de datos (check sheets): plantillas que recogen datos de una característica de calidad A medida que se van registrando las mediciones nos va mostrando como se reparten.

13 Métodos de mejora de la calidad Histogramas: representación gráfica de las variables Nos permite ver rápidamente como se distribuyen las mediciones contenidas en una tabla.

14 Métodos de mejora de la calidad Diagramas de Pareto: representación gráfica de variables cualitativas En este ejemplo, eliminando del proceso las causas que provocan los dos primeros tipos de defectos desaparecerían la mayoría de los defectos.

15 Métodos de mejora de la calidad Diagramas de dispersión: estudia la relación entre 2 variables

16 Métodos de mejora de la calidad Gráficos de flujo: esquema que describe el proceso en sus múltiples partes con el fin de identificar el problema Inicio Símbolo inicio/fin Pesado Símbolo operación Agregar disolvente Fin Reacción Química NO Sacar muestra Medir propiedad Valor correcto? SI Enfriar Símbolo operación manual Símbolo de decisión

17 Gráficos de Control Los gráficos de control son una herramienta de control estadístico que se utiliza para monitorizar las causas comunes de variabilidad y detectar la ocurrencia de causas especiales a lo largo del tiempo. Permiten visualizar si el proceso está bajo control. Los más conocidos son los Gráficos de control de Shewhart*, que representan una característica de calidad frente al tiempo (o una variable relacionada con el tiempo) y muestran los límites de control. nº de quejas Gráfico c Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 meses *Ingeniero americano de la Bell Telephone Laboratories, experto en el control de la calidad. UCL CL LCL

18 Límites de control Se denomina línea central (CL), al valor medio de la característica de calidad estudiada. El límite superior de control (UCL) y el límite inferior de control (LCL), son dos límites (por encima y por debajo de la línea central) con los que se decide si el proceso está fuera de control. Si se puede suponer que la característica de calidad se distribuye de forma normal, el intervalo (μ-3σ, μ+3σ) es un intervalo de probabilidad al 99.7% de confianza para un valor de esa característica. Consideraremos el proceso fuera de control si la característica toma un valor fuera de ese intervalo. Es decir, tomaremos: UCL = μ+3σ CL = μ LCL = μ-3σ Idealmente, μ y σ se estiman mediante registros históricos de la característica de calidad o vienen dados de la fase de diseño. Si no queda otro remedio, podemos estimarlos mediante el registro que se está analizando.

19 Gráficos de Control de Shewart Al monitorizar un proceso con un gráfico de control puede ocurrir: Alarma verdadera: ocurre una causa especial y se detecta. Ocurre una causa especial pero no se detecta. Falsa alarma: no ocurre ninguna causa especial pero el gráfico de control produce una alarma. No ocurre ninguna causa especial y el gráfico de control no produce ninguna alarma La determinación de LCL y UCL debe hacerse de forma que se detecte la presencia de causas especiales con la mayor probabilidad posible y lo más rápidamente posible, minimizando al mismo tiempo la tasa de falsas alarmas.

20 Gráficos de Control de Shewart Los Gráficos de Control de Shewart varían según el tipo de dato que representan: Gráfico c: número total de defectos durante sucesivos intervalos de tiempo o espacio de longitud fija. Gráfico u: número de defectos por unidad de medida Gráfico np: cantidad de unidades defectuosas en la muestra Gráfico p: proporción de unidades defectuosas en la muestra Gráficos X, R y S: características de calidad de tipo continuo, media y variabilidad (rango y desviación típica) del proceso.

21 Gráfico c Estamos interesados en el número total de defectos durante sucesivos intervalos de tiempo o espacio de longitud fija. Si se cumplen las condiciones para que X~Po(c), su función de probabilidad será: donde la media y la varianza de X serán iguales a c. Cuando la media c de X es suficientemente grande como para que la distribución de Poisson pueda aproximarse por la distribución normal, los límites de control quedarán definidos como: La línea central será, obviamente, CL = c

22 Gráfico c Ejemplo Un pequeño restaurante de carretera ha recogido todos los meses durante dos años el número de quejas que ha rebidido en relación a los servicios que presta: 2009 Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic quejas Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic quejas Realiza un gráfico de control e indica si el proceso se encuentra bajo control o no.

23 Gráfico c Ejemplo Gráfico c quejas Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 meses Dado que no hemos usado la verdadera c del proceso, la re estimamos eliminando el punto que está fuera de control, por si se están enmascarando otros y para obtener una c más ajustada a la media cuando el proceso está bajo control. quejas Gráfico c ene-05 abr-05 jul-05 oct-05 ene-06 may-06 ag0-06 nov-06 meses

24 Ejercicio Una compañía que fabrica teclados realiza diariamente análisis de calidad a 25 teclados con el fin de determinar el número total de teclas defectuosas. La producción será satisfactoria si el número de teclas defectuosas no varía de 4. En la siguiente tabla se muestran el número de teclas defectuosas en 30 jornadas: Obtener el gráfico de control del proceso y determinar si el proceso está bajo control.

25 Gráfico np Estamos interesados en el número X de unidades defectuosas en una muestra de tamaño n. En este caso, X debe ser una distribución binomial y su función de probabilidad será: La media de X es np y la varianza np(1 p). Si el valor de n es suficientemente grande como para que la distribución binomial pueda aproximarse por la distribución normal, los límites de control se definirían como: CL sería np. p podría ser el histórico si se dispone de él o el estimado a partir de la muestra.

26 Gráfico np Ejemplo Una empresa fabrica pequeñas piezas de PVC mediante un proceso mecanizado. Al analizar las piezas se puede determinar si estas tienen las dimensiones adecuadas o no, en cuyo caso se considera defectuosa. La empresa quiere elaborar un gráfico de control para controlar el número de piezas defectuosas producidas por la máquina. Para ello se seleccionaron 30 muestras de tamaño 50, obteniendose los siguientes datos: muestra Nº defectuosas muestra Nº defectuosas muestra Nº defectuosas Construya el gráfico de control para la empresa y analice la información obtenida.

27 Ejemplo Gráfico np p=0.23 np=11.57

28 Gráficos de tipo continuo Los gráficos para características de tipo continuo presentan una diferencia importante con respecto a los gráficos c y np vistos. En los casos vistos, al conocer la media de un proceso queda completamente determinada la varianza (distribución binomial y Poisson), por lo que sólo es necesario monitorizar la media (la variabilidad queda monitorizada). Al trabajar con medidas continuas, en las que se suele usar la distribución de probabilidad normal, la media y la varianza no están relacionadas, por lo que habrá que monitorizar por una lado la media del proceso, gráfico X y por otro la variabilidad, gráfico R (para el rango) o gráfico S (para la desviación típica).

29 Gráfico X Es una representación de las medias observadas para la característica de calidad medida en sucesivos intervalos de muestreo t =1,2,... n: número de observaciones en cada intervalo de muestreo t Los límites de control se suelen calcular a partir del rango medio de los datos observados en cada intervalo t, A partir de este rango medio es posible obtener un estimador de la desviación típica de las observaciones individuales x ti y así un estimador de la desviación típica de las medias cada intervalo de muestreo t: donde d 2 es una constante en función de n obtenidas en n d

30 Gráfico X CL puede ser igual a la media μ histórica de la característica medida en caso de ser conocida, o a la media de las medias observadas: Los límites de control quedan definidos como:

31 Ejemplo Gráfico X En una fábrica que produce tuberías se han medido los diámetros (en mm) de 16 tuberías. En la siguiente tabla se muestran los datos obtenidos a lo largo de 8 intervalos de muestreo sucesivos, en cada uno de los cuales se han seleccionaldo al azar 2 tuberías para medir sus diámetros x t1 y x t2. Dibujar el gráfico X, puede decirse que la media del proceso está bajo control? Intervalo de muestreo (t) x t1 x t

32 Ejemplo Gráfico X

33 Gráfico R Es una representación de los rangos R t, calculados para el gráfico X. En este la desviación típica de los rangos R t obtenidos en cada intervalo de muestreo t puede calcularse como: donde d R es una constante en función de n n d R Por tanto, los límites de control del gráfico R se calculan: CL será igual al rango medio.

34 Ejemplo Gráfico R En una fábrica que produce tuberías se han medido los diámetros (en mm) de 16 tuberías. En la siguiente tabla se muestran los datos obtenidos a lo largo de 8 intervalos de muestreo sucesivos, en cada uno de los cuales se han seleccionaldo al azar 2 tuberías para medir sus diámetros x t1 y x t2. Dibujar el gráfico R, puede decirse que la variabilidad del proceso está bajo control? Intervalo de muestreo (t) x t1 x t

35 Ejemplo Gráfico R

36 Interpretación de los gráficos Cada vez que aparece un punto fuera de los límites de control se declara la ocurrencia una alarma, cuyo origen hay que investigar para eliminar el problema del proceso. Mientras todos los puntos se encuentren entre LCL y UCL la monitorización continúa. Puede ocurrir que todos los puntos estén entre LCL y UCL pero el proceso no esté bajo control y pueda declararse una alarma: Racha: 7 puntos o más consecutivos a un mismo lado de la línea central. También si hay 10 de 11, ó 12 de 14. Tendencia: 7 puntos o más en orden creciente o decreciente Periodicidad: se repite el mismo patrón de puntos en periodos de longitud fija (aparecen ciclos). Inestabilidad: fluctuaciones cerca de LCL y UCL Superestabilidad: 16 puntos o más entre σ y +σ Otros: 2 de 3 puntos consecutivos fuera de la banda ±2σ. 4 de 5 puntos consecutivos fuera de la banda ±σ.

37 Interpretación de los gráficos Racha: 7 puntos o más consecutivos a un mismo lado de la línea central LC LCL UCL

38 Interpretación de los gráficos Tendencia: 7 puntos o más en orden creciente o decreciente LC LCL UCL

39 Interpretación de los gráficos Periodicidad: se repite el mismo patrón de puntos en periodos de longitud fija (aparecen ciclos). LC LCL UCL

40 Interpretación de los gráficos Inestabilidad: fluctuaciones cerca de LCL y UCL LC LCL UCL

41 Interpretación de los gráficos Superestabilidad: 16 puntos o más entre σ y +σ LCL UCL

42 Interpretación de los gráficos Si adoptamos como protocolo que cada vez que ocurre una de esas situaciones se declara una alarma: Aumentará la sensibilidad del proceso de monitorización: mayor probabilidad/rapidez para detectar alarmas. Aumentará el número medio de falsas alarmas: usamos varios criterios para detectar alarmas cada uno con su tasa de falsas alarmas. El primer caso es beneficioso pero el segundo es perjudicial. Debe adoptarse una solución de compromiso que permita optimizar la detección de alarmas verdaderas, minimizando la tasa de falsas alarmas.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

TEMA 3: Control Estadístico de la Calidad

TEMA 3: Control Estadístico de la Calidad TEMA 3: Control Estadístico de la Calidad 1. Introducción al control de la calidad. 2. Métodos de mejora de la calidad 3. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R 4. Interpretación

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

Grado en Ingeniería. Estadística. Tema 3

Grado en Ingeniería. Estadística. Tema 3 Grado en Ingeniería Asignatura: Estadística Tema 3. Control Estadístico de Procesos (SPC) Control Estadístico de Procesos (SPC) Introducción Variabilidad de un proceso de fabricación Causas asignables

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Agencia de Cooperación Internacional del Japón Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Industrial 7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Elaboración: Kiyohiro

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier

Más detalles

% PRODUCTOS NO CONFORMES 10% 5%

% PRODUCTOS NO CONFORMES 10% 5% Departamento de Ingeniería Mecánica Tecnología Mecánica I 67.15 Unidad 13: Control de Calidad Ing. Sergio Laguzzi 1 TEMARIO - Definición de Calidad. Costos de la no Calidad. Estrategia de detección (Planes

Más detalles

PROCEDIMIENTO GENERAL RAZÓN SOCIAL DE LA EMPRESA. Auditorias Internas de Calidad. Código PG-09 Edición 0. Índice:

PROCEDIMIENTO GENERAL RAZÓN SOCIAL DE LA EMPRESA. Auditorias Internas de Calidad. Código PG-09 Edición 0. Índice: Índice: 1. TABLA RESUMEN... 2 2. OBJETO... 2 3. ALCANCE... 2 4. RESPONSABILIDADES... 3 5. ENTRADAS... 3 6. SALIDAS... 3 7. PROCESOS RELACIONADOS... 4 8. DIAGRAMA DE FLUJO... 4 9. DESARROLLO... 5 9.1. ELABORACIÓN

Más detalles

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS 1) INTRODUCCIÓN Tanto la administración de calidad como la administración Seis Sigma utilizan una gran colección de herramientas estadísticas.

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

HERRAMIENTAS DE LA CALIDAD

HERRAMIENTAS DE LA CALIDAD HERRAMIENTAS DE LA CALIDAD Ayudan en la medición, análisis e implementación de mejoramientos. Para mejorar Las principales herramientas de la calidad se agrupan en dos categorías: las siete herramientas

Más detalles

Tema 3. Control estadístico de calidad. 3.1. Introducción. Qué es el control estadístico de la calidad? 3.2Introducción a los gráficos de control.

Tema 3. Control estadístico de calidad. 3.1. Introducción. Qué es el control estadístico de la calidad? 3.2Introducción a los gráficos de control. Tema 3 Control estadístico de calidad 3.1Introducción. Qué es el control estadístico de la calidad? 3.2Introducción a los gráficos de control. 3.3Gráficos de control para variables. 3.4Gráficos de control

Más detalles

Las 7 Herramientas Fundamentales de la Calidad

Las 7 Herramientas Fundamentales de la Calidad Las 7 Herramientas Fundamentales de la Calidad Se utilizarán los métodos estadísticos elementales, dado que está dirigido a todos los funcionarios, desde la alta dirección hasta los operarios de base (Ej:

Más detalles

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC 1. INTRODUCCIÓN. Mientras el Dr. Walter Shewhart de los Laboratorios Bell estudiaba datos de procesos en la década

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control por Variables www.bvbusiness-school.com GÁFICOS DE CONTOL PO VAIABLES Los gráficos de control por variables se utilizan para aquellas características de calidad que permiten ser medidas

Más detalles

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS MEDIANTE UN ENFOQUE POR CADENAS DE MARKOV ABSORBENTES Lidia Toscana - Nélida Moretto - Fernanda Villarreal Universidad Nacional del Sur, ltoscana@criba.edu.ar

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

Año ene ene

Año ene ene Año 2014 2014 L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M 2014 ene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ene feb 1 2 3 4 5 6

Más detalles

PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES

PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES CONTROL DE CALIDAD CONTROL ESTADÍSTICO DE PROCESO Avanzar hacia la excelencia operacional es clave para la mejora de la competitividad de

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

ANÁLISIS MODAL DE FALLOS EFECTOS (A. M. F. E.)

ANÁLISIS MODAL DE FALLOS EFECTOS (A. M. F. E.) ANÁLISIS MODAL DE FALLOS EFECTOS (A. M. F. E.) Y 1. INTRODUCCIÓN Este documento describe paso a paso el proceso de identificación, evaluación y prevención de deficiencias en los productos o servicios.

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Costos de Distribución: son los que se generan por llevar el producto o servicio hasta el consumidor final

Costos de Distribución: son los que se generan por llevar el producto o servicio hasta el consumidor final CLASIFICACIÓN DE LOS COSTOS Los costos tienen diferentes clasificaciones de acuerdo con el enfoque y la utilización que se les dé. Algunas de las clasificaciones más utilizadas son. Según el área donde

Más detalles

Cómo funciona el Diagrama de Control

Cómo funciona el Diagrama de Control Cómo funciona el Diagrama de Control Capítulo 4 Control Estadístico de Calidad Modelo del sistema de control de proceso ( con retroalimentación ) VOZ DEL PROCESO METODOS ESTADÍSTICOS Personal Equipo Materiales

Más detalles

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 SECCIÓN 2: SISTEMA DE CONTROL 1.- Proceso: Se entiende por proceso, la combinación de suministradores, productores, personas, equipos, imputs de materiales,

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Control Estadístico de Procesos www.bvbusiness-school.com CONTROL ESTADÍSTICO DE PROCESOS El es un conjunto de técnicas estadísticas destinadas a hacer un seguimiento, en tiempo real, de la calidad que

Más detalles

PROCEDIMIENTO GENERAL. Auditorias Internas de Prevención de Riesgos Laborales RAZÓN SOCIAL DE LA EMPRESA. Código PG-11 Edición 0.

PROCEDIMIENTO GENERAL. Auditorias Internas de Prevención de Riesgos Laborales RAZÓN SOCIAL DE LA EMPRESA. Código PG-11 Edición 0. Índice: 1. TABLA RESUMEN... 2 2. OBJETO... 2 3. ALCANCE... 2 4. RESPONSABILIDADES... 3 5. ENTRADAS... 4 6. SALIDAS... 4 7. PROCESOS RELACIONADOS... 4 8. DIAGRAMA DE FLUJO... 5 9. DESARROLLO... 6 9.1. PLANIFICACIÓN

Más detalles

2017, año del Centenario de la Constitución Mexicana Índice Nacional de Precios al Consumidor 2017

2017, año del Centenario de la Constitución Mexicana Índice Nacional de Precios al Consumidor 2017 FEB.2008 DIC.2016 122.5150 1.4042 FEB.2008 87.2480 MAR.2008 DIC.2016 122.5150 1.3941 MAR.2008 87.8803 ABR.2008 DIC.2016 122.5150 1.3909 ABR.2008 88.0803 MAY.2008 DIC.2016 122.5150 1.3925 MAY.2008 87.9852

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

CAPITILO 4 CASO. PRACTICO

CAPITILO 4 CASO. PRACTICO CAPITILO 4 CASO. PRACTICO DETERMINAR Qué?, Cuándo? y Cómo? Inspeccionar el inventario. 4.1 INTRODUCCIÓN: En el presente trabajo se determina la clasificación ABC de inventarios por cantidad y costos de

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

LA DEFINICIÓN E IMPLANTACIÓN DE UN SISTEMA DE INDICADORES DE CALIDAD

LA DEFINICIÓN E IMPLANTACIÓN DE UN SISTEMA DE INDICADORES DE CALIDAD Página 1 de 1 Manual Guía para la Definición e Implantación de un Sistema de Indicadores de Calidad Página 2 de 2 ÍNDICE 1. Introducción pág. 3 2. Definiciones pág. 4 3. Tipos de indicadores de calidad

Más detalles

Gestión de calidad en el software. Calidad en el Desarrollo de Software. Spoilage. Spoilage

Gestión de calidad en el software. Calidad en el Desarrollo de Software. Spoilage. Spoilage Gestión de calidad en el software Calidad de software Depto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Segundo Cuatrimestre 2007 primer problema: los errores se aceptan. Esto

Más detalles

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL María Pérez Marqués Metodología Seis Sigma a través de Excel María Pérez Marqués ISBN: 978-84-937769-7-8 EAN: 9788493776978 Copyright 2010 RC Libros RC Libros es

Más detalles

Gestión y Control de Calidad. Ingeniería Técnica de Telecomunicaciones Tema 3 Gestión de la calidad: concepto y aportaciones clásicas

Gestión y Control de Calidad. Ingeniería Técnica de Telecomunicaciones Tema 3 Gestión de la calidad: concepto y aportaciones clásicas Tema 3 Gestión de la calidad: concepto y aportaciones clásicas 3.1.- Porqué es importante gestionar la calidad? Calidad, productividad y competitividad 3.2.- Concepto de gestión de la calidad 3.3.- Control

Más detalles

QUÉ ES LA CALIDAD? CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS.

QUÉ ES LA CALIDAD? CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS. Q QUÉ ES LA CALIDAD? INTRODUCCIÓN CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS. SATISFACCION ES LA PERCEPCION DEL CUMPLIMIENTO DE LOS

Más detalles

5.- ANÁLISIS DE RIESGO

5.- ANÁLISIS DE RIESGO 5.- ANÁLISIS DE RIESGO El módulo de Análisis de Riesgo se caracteriza por desarrollar una herramienta formativa para la gestión, que permite al usuario identificar, analizar y cuantificar el riesgo de

Más detalles

DIRECCIÓN DE PROYECTOS

DIRECCIÓN DE PROYECTOS PLANIFICACIÓN N Y CONTROL DE PROYECTOS Podemos definir un proyecto como una serie de tareas relacionadas, parcialmente ordenadas y generalmente dirigidas a la obtención de un resultado importante, por

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. GRÁAFICOS DE CONTROL POR VARIABLES 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas más potentes para el control de procesos,

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015

SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015 BOLETÍN DE PRENSA NÚM. 372/15 2 DE SEPTIEMBRE DE 2015 AGUASCALIENTES, AGS. PÁGINA 1/5 SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015 El INEGI presenta los resultados del Sistema de Indicadores

Más detalles

DIAGRAMAS DE CONTROL TEORÍA GENERAL

DIAGRAMAS DE CONTROL TEORÍA GENERAL 1. DESARROLLO HISTÓRICO DIAGRAMAS DE CONTROL TEORÍA GENERAL 20 s Shewhart Primeros avances en el control estadístico de calidad. Segunda Guerra Mundial Se emplearon con mayor fuerza No se utilizaron Deming

Más detalles

CAPITULO 2 DISEÑO DE GRAFICAS ESTADISTICO-ECONOMICAS DE CONTROL DE CALIDAD.

CAPITULO 2 DISEÑO DE GRAFICAS ESTADISTICO-ECONOMICAS DE CONTROL DE CALIDAD. CAPITULO 2 DISEÑO DE GRAFICAS ESTADISTICO-ECONOMICAS DE CONTROL DE CALIDAD. En este capítulo se presenta la definición de diseño estadístico, económico y económico-estadístico para gráficas de control,

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

Master en Gestión de la Calidad

Master en Gestión de la Calidad Master en Gestión de la Calidad E U R O P E A N Q U A L I T Y 18. Estudios de Capacidad 1 / 1 Estudios de Capacidad: Lo que vamos a estudiar en este apartado se emplea tanto en la planificación de los

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Calibración y control de calidad de instrumentos de análisis

Calibración y control de calidad de instrumentos de análisis Calibración y control de calidad de instrumentos de análisis cĺınico. María Cecilia San Román Rincón Monografía vinculada a la conferencia del Dr. Horacio Venturino sobre Instrumental para laboratorio

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

Control de calidad del. Ciudad de La Rioja Mayo 2013

Control de calidad del. Ciudad de La Rioja Mayo 2013 Control de calidad del Hormigón Ciudad de La Rioja Mayo 2013 Control de calidad Desde que se comenzó con la producción de bienes, se han hecho intentos en controlar el proceso de manera de mejorar la calidad

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

Justo a tiempo JIT. La filosofía del "justo a tiempo" se fundamenta principalmente en:

Justo a tiempo JIT. La filosofía del justo a tiempo se fundamenta principalmente en: Justo a tiempo JIT El sistema justo a tiempo, comenzó como el sistema de producción de la empresa Toyota por el año 1976 buscando mejorar la flexibilidad de los procesos fabriles como respuesta al descenso

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

CONTROL ESTADÍSTICO DE PROCESOS. ii. PRESENCIA DE CAUSAS ASIGNABLES iii. GRÁFICO DE MEDIAS Y RANGOS

CONTROL ESTADÍSTICO DE PROCESOS. ii. PRESENCIA DE CAUSAS ASIGNABLES iii. GRÁFICO DE MEDIAS Y RANGOS CONTROL ESTADÍSTICO DE PROCESOS INDICE 1. INTRODUCCIÓN 2. GRÁFICOS DE CONTROL POR VARIABLE (a) INTRODUCCIÓN i. TOLERANCIAEINDICEDECAPACIDAD ii. PRESENCIA DE CAUSAS ASIGNABLES iii. GRÁFICO DE MEDIAS Y RANGOS

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

JUSTO A TIEMPO (JIT)

JUSTO A TIEMPO (JIT) PÁG. 1 DE 9 1. QUÉ ES? Just in time (que también se usa con sus siglas JIT), literalmente quiere decir Justo a tiempo. Es una filosofía que define la forma en que debería optimizarse un sistema de producción.

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Herramientas estadísticas básicas para la calidad

Herramientas estadísticas básicas para la calidad Herramientas estadísticas básicas para la calidad Kauru Ishikawa promulgó la utilización de siete herramientas básicas de la calidad: Gráficas de barras e histogramas Listas de verificación Diagramas de

Más detalles

SISTEMAS DE PRODUCCIÓN

SISTEMAS DE PRODUCCIÓN SISTEMAS DE PRODUCCIÓN La producción es el proceso mediante el cual la empresa transforma un conjunto de factores de producción en un producto cuyo valor debe ser mayor que la suma de los valores de los

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Lic. Elda Monterroso UNLu Características de calidad Variables Características que se pueden medir (peso, longitud, temperatura, etc.) Pueden ser números enteros o fracciones

Más detalles

DETERMINACIÓN DEL COEFICIENTE BETA (β) o RIESGO NO DIVERSIFICABLE

DETERMINACIÓN DEL COEFICIENTE BETA (β) o RIESGO NO DIVERSIFICABLE DETERMINACIÓN DEL COEFICIENTE BETA (β) o RIESGO NO DIVERSIFICABLE I. DEFINICIÓN Actualmente es importante tomar en cuenta que cada decisión empresarial que una Compañía quiera realizar, conlleva un grado

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS 1 ÍNDICE DEFINIR. 3 MEDIR.... 4 ANALIZAR..... 5 MEJORAR. 6 CONTROLAR... 7 GLOSARIO... 8 MAPA CONCEPTUAL. 10 2 DEFINIR: Iniciación del proyecto.

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

El Rol de la Estadística en el Control de la Calidad

El Rol de la Estadística en el Control de la Calidad El Rol de la Estadística en el Control de la Calidad Jaime Mosquera Restrepo Profesor Escuela de Estadística. Universidad del Valle jaime.mosquera@correounivalle.edu.co Que es calidad? Como se evalúa la

Más detalles

Haciendo estadística con SPAC-FL y Minitab

Haciendo estadística con SPAC-FL y Minitab Haciendo estadística con SPAC-FL y Minitab Mayo de 2011 Ing. Fernando Tomati Director de Contenidos HLTnetwork S.A. www.hltnetwork.com 1 de 12 HACIENDO ESTADÍSTICA CON SPAC-FL Y MINITAB El uso de las estadísticas

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO Los métodos más eficaces de protección contra las heladas son la plantación de cultivos que no

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

CONTROL DEL PROCESO POR VARIABLES Y ATRIBUTOS

CONTROL DEL PROCESO POR VARIABLES Y ATRIBUTOS 3 CONTROL DEL PROCESO POR VARIABLES Y ATRIBUTOS Al finalizar la unidad, el alumno realizará gráficas de control por variables X y R y por atributos para mantener el seguimiento y control de los procesos

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

GRÁFICOS DE CONTROL DE SHEWHART

GRÁFICOS DE CONTROL DE SHEWHART GRÁFICOS DE CONTROL DE SHEWHART Jordi Riu Grupo de Quimiometría, Cualimetría y Nanosensores Universitat Rovira i Virgili Campus Sescelades C/ Marcel lí Domingo s/n 43007-Tarragona Introducción Uno de los

Más detalles

Práctica de CONTROL DE CALIDAD Gráficos de control por variables e Índices de Capacidad

Práctica de CONTROL DE CALIDAD Gráficos de control por variables e Índices de Capacidad Práctica de CONTROL DE CALIDAD Gráficos de control por variables e Índices de Capacidad 1. Objetivos de la práctica Utilización de herramientas estadísticas para el Control de Procesos. En particular realizaremos:

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

UNIDAD II MEDIDAS DE TENDENCIA CENTRAL. Otras Medidas de tendencia central

UNIDAD II MEDIDAS DE TENDENCIA CENTRAL. Otras Medidas de tendencia central UNIDAD II MEDIDAS DE TENDENCIA CENTRAL Otras Medidas de tendencia central INTRODUCCIÓN La media, mediana y moda son las medidas de tendencia central más importantes, de mayor aplicación y más fáciles de

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

La medición como pilar básico de la calidad total

La medición como pilar básico de la calidad total Seminarios del Instituto de Matemática tica Aplicada a la Ciencia y la Ingeniería Universidad de Castilla La Mancha (Viernes 14 de Noviembre de 2008) La medición como pilar básico de la calidad total Roberto

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

17 de Agosto de 2013 HERRAMIENTAS DE CALIDAD TOTAL

17 de Agosto de 2013 HERRAMIENTAS DE CALIDAD TOTAL HERRAMIENTAS DE CALIDAD TOTAL 1 Daniel Dingler Paredes. Licenciatura en Administración. Calidad Total. Descripción de Herramientas de calidad total. Calidad Total significa Mejora continua. Ofrecer el

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

7 herramientas imprescindibles para la calidad en la empresa. El camino más seguro hacia la excelencia

7 herramientas imprescindibles para la calidad en la empresa. El camino más seguro hacia la excelencia 7 herramientas imprescindibles para la calidad en la empresa Las principales característiques de los sectores de producción industrial 2 ÍNDICE Las 7 herramientas de calidad imprescindibles... 4 1...Diagrama

Más detalles

Suplemento Control estadístico stico de procesos

Suplemento Control estadístico stico de procesos Suplemento Control estadístico stico de procesos Contenido Control estadístico de procesos (CEP) Gráficos de control para variables El teorema central del límite Fijación de límites del gráfico de medias

Más detalles

El sistema de aseguramiento de calidad adecuado para la fabricación de medicamentos debe garantizar que:

El sistema de aseguramiento de calidad adecuado para la fabricación de medicamentos debe garantizar que: II. GENERALIDADES. II.1. CONCEPTOS GENERALES. II.1.1. GESTION DE LA CALIDAD. La gestión de la calidad total es la organización estructurada y funcional de recursos humanos y materiales que tiene por objeto

Más detalles

EVALUACIÓN DE LOS RIESGOS EN EL TRANSPORTE POR CARRETERA

EVALUACIÓN DE LOS RIESGOS EN EL TRANSPORTE POR CARRETERA Sistema de Gestión de Riesgos del Transporte por carretera (GRAT) estándar 2: Evaluación de los riesgos en el transporte CAPÍTULO 2. EVALUACIÓN DE LOS RIESGOS EN EL TRANSPORTE POR CARRETERA Índice de contenido

Más detalles

Integradora 4. Control de calidad, materiales e inventario.

Integradora 4. Control de calidad, materiales e inventario. Administración de Operaciones Integradora 4. Control de calidad, materiales e inventario. Objetivo Al finalizar la actividad integradora serás capaz de: Comprender los conceptos del Comercio Electrónico

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

SISTEMAS Y MANUALES DE LA CALIDAD

SISTEMAS Y MANUALES DE LA CALIDAD SISTEMAS Y MANUALES DE LA CALIDAD NORMATIVAS SOBRE SISTEMAS DE CALIDAD Introducción La experiencia de algunos sectores industriales que por las características particulares de sus productos tenían necesidad

Más detalles

Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. www.fundibeq.org

Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. www.fundibeq.org DIAGRAMA DE FLUJO 1.- INTRODUCCIÓN Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. Muestra la importancia de dos aspectos clave en este proceso:

Más detalles

Sesión Nº 2. Técnicas de gestión del mantenimiento industrial

Sesión Nº 2. Técnicas de gestión del mantenimiento industrial Sesión Nº 2 Técnicas de gestión del mantenimiento industrial OBJETIVO El objetivo del Mantenimiento es conservar todos los bienes que componen los activos de la empresa, en las mejores condiciones de funcionamiento,

Más detalles